Bedrock
You are currently on a page documenting the use of Amazon Bedrock models as text completion models. Many popular models available on Bedrock are chat completion models.
You may be looking for this page instead.
Amazon Bedrock is a fully managed service that makes Foundation Models (FMs) from leading AI startups and Amazon available via an API. You can choose from a wide range of FMs to find the model that is best suited for your use case.
This will help you get started with Bedrock completion models (LLMs)
using LangChain. For detailed documentation on Bedrock
features and
configuration options, please refer to the API
reference.
Overviewβ
Integration detailsβ
- TODO: Fill in table features.
- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.
- TODO: Make sure API reference links are correct.
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
Bedrock | @langchain/community | β | β | β |
Setupβ
To access Bedrock models youβll need to create an AWS account, get an
API key, and install the @langchain/community
integration, along with
a few peer dependencies.
Credentialsβ
Head to aws.amazon.com to sign up to AWS Bedrock and generate an API key. Once youβve done this set the environment variables:
export BEDROCK_AWS_REGION="your-region-url"
export BEDROCK_AWS_ACCESS_KEY_ID="your-access-key-id"
export BEDROCK_AWS_SECRET_ACCESS_KEY="your-secret-access-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installationβ
The LangChain Bedrock integration lives in the @langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
And install the peer dependencies:
- npm
- yarn
- pnpm
npm i @aws-crypto/sha256-js @aws-sdk/credential-provider-node @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
yarn add @aws-crypto/sha256-js @aws-sdk/credential-provider-node @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
pnpm add @aws-crypto/sha256-js @aws-sdk/credential-provider-node @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
You can also use Bedrock in web environments such as Edge functions or Cloudflare Workers by omitting the @aws-sdk/credential-provider-node
dependency
and using the web
entrypoint:
- npm
- yarn
- pnpm
npm i @aws-crypto/sha256-js @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
yarn add @aws-crypto/sha256-js @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
pnpm add @aws-crypto/sha256-js @smithy/protocol-http @smithy/signature-v4 @smithy/eventstream-codec @smithy/util-utf8 @aws-sdk/types
Instantiationβ
Now we can instantiate our model object and generate chat completions:
// @lc-docs-hide-cell
// Deno requires these imports, and way of loading env vars.
// we don't want to expose in the docs.
// Below this cell we have a typescript markdown codeblock with
// the node code.
import "@aws-sdk/credential-provider-node";
import "@smithy/protocol-http";
import "@aws-crypto/sha256-js";
import "@smithy/protocol-http";
import "@smithy/signature-v4";
import "@smithy/eventstream-codec";
import "@smithy/util-utf8";
import "@aws-sdk/types";
import { Bedrock } from "@langchain/community/llms/bedrock";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
const llm = new Bedrock({
model: "anthropic.claude-v2",
region: "us-east-1",
// endpointUrl: "custom.amazonaws.com",
credentials: {
accessKeyId: getEnvironmentVariable("BEDROCK_AWS_ACCESS_KEY_ID"),
secretAccessKey: getEnvironmentVariable("BEDROCK_AWS_SECRET_ACCESS_KEY"),
},
temperature: 0,
maxTokens: undefined,
maxRetries: 2,
// other params...
});
import { Bedrock } from "@langchain/community/llms/bedrock";
const llm = new Bedrock({
model: "anthropic.claude-v2",
region: process.env.BEDROCK_AWS_REGION ?? "us-east-1",
// endpointUrl: "custom.amazonaws.com",
credentials: {
accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID,
secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY,
},
temperature: 0,
maxTokens: undefined,
maxRetries: 2,
// other params...
});
Invocationβ
Note that some models require specific prompting techniques. For
example, Anthropicβs Claude-v2 model will throw an error if the prompt
does not start with Human:
.
const inputText = "Human: Bedrock is an AI company that\nAssistant: ";
const completion = await llm.invoke(inputText);
completion;
" Here are a few key points about Bedrock AI:\n" +
"\n" +
"- Bedrock was founded in 2021 and is based in San Fran"... 116 more characters
Chainingβ
We can chain our completion model with a prompt template like so:
import { PromptTemplate } from "@langchain/core/prompts";
const prompt = new PromptTemplate({
template: "Human: How to say {input} in {output_language}:\nAssistant:",
inputVariables: ["input", "output_language"],
});
const chain = prompt.pipe(llm);
await chain.invoke({
output_language: "German",
input: "I love programming.",
});
' Here is how to say "I love programming" in German:\n' +
"\n" +
"Ich liebe das Programmieren."
API referenceβ
For detailed documentation of all Bedrock features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_community_llms_bedrock.Bedrock.html